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General off-diagonal rational approximants are defined from power series in
N-variables. These approximants are generalizations of Chisholm approximants,
which have been defined recently. A systemati~ method of ordering the defining
equations is given, and this ordering is used in the prong method for solving
the defining equations. Conditions for nondegeneracy of the defining equations
are found in terms of the coefficients in the one-variable series obtained from
the N-variable series by equating all but one variable to zero. A number of
properties of the approximants are found; the two variable approximants being
considered in more detail.

1. INTRODUCTION

In a recent paper, Chisholm [1], a method of defining "diagonal" rational
approximants to a function of two variables defined by its power series was
introduced. In another paper, Chisholm and McEwan [2], this idea was
extended to cover functions of N-variables. These Chisholm approximants
(CA's) may be referred to as diagonal approximants, as the maximum powers
of all variables, in both the numerator and denominator, are equal to some
integer m.

In this paper, these ideas will be generalized to off-diagonal approximants
in the sense that the maximum powers of each variable may be different in
the numerator and in the denominator, i.e., rational approximants with
maximum powers

mi , i = 1, ... , N, in the numerator,
and

ni , i = 1, ... , N, in the denominator,

will be defined. One may thus consider the approximants in terms of hyper
rectangular boxes in the lattice space of indices, instead of hypercubes as for
Chisholm approximants. Of course, these approximants will include CA's
as special cases.
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The coefficients in the rational approximants will, as for CA's, be defined
as the solution of a set of linear equations, called the defining equations.
The method of definition of these defining equations, involving the idea of
"prongs," will yield a number of useful results concerning the conditions
necessary for the set of equations to be nondegenerate. It will be shown that
these conditions are closely linked with the conditions for the one variable
power series, obtained from the N-variable power series by equating all but
one of the variables to zero, to be normal series in the sense of Pade
approximants.

A systematic method, called the prong method, of solving the defining
equations will be constructed. This method may of course be used for solving
the defining equations for the special case of CA's. The prong method
introduced here is a generalization of the method used in a previous paper,
Hughes Jones and Makinson [5i, in which Chisholm approximants for two
variables were discussed.

A simple-off-diagonal or symmetric-off-diagonal (SOD) approximant will
be one in which the maximum powers mi' in the numerator are all equal,
to m say, and the maximum powers, ni, in the denominator are all equal,
to n say. Such approximants are probably of use in dealing with functions
symmetric in the variables. SOD approximants to the Beta function, a
symmetric function in two variables, have been calculated (Graves-Morris,
Hughes Jones and Makinson [4]). The results are encouraging.

A general-off-diagonal (GOD) approximant, in this paper, will be one in
which all the maximum powers may be different. In Section 2, the general-off
diagonal approximants are defined and the defining equations are grouped
together in a systematic way. In Section 3, two variable approximants are
studied in some detail and in Section 4, the methods and theorems of
Section 3 are extended to cover N-variable approximants.

Apart from the theorems about the conditions for nondegeneracy of the
approximants, the following properties are found:

(i) Reduction to the corresponding Pade approximant when all but
one of the variables are equated to zero.

(ii) Reduction to an approximant in a smaller number of variables
when some of the variables are equated to zero, i.e., the approximants satisfy
a projection property.

(iii) Factorization of the approximant into the product of two
approximants when the original function is the product of two functions
involving independent sets of variables.

(iv) The approximant formed from the reciprocal series is the reciprocal
of the approximant formed from the original series.
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It is not difficult to construct more general schemes to define more general
approximants than those considered in this paper. It is, however, not yet
clear whether any other schemes will yield a systematic method of solution
or whether other approximants will have all the properties (i)-(iv).

2. THE DEFINITION OF RATIONAL ApPROXIMANTS

Let f(Zl ,... , ZN) be a function of N-variables defined by a possibly formal
power series expansion

co

f(Zl ,... , ZN) = L
0:1=0

(2.1)

It will be convenient to use the following notation:

a =:::: «(Xl"'" CXN),

IN = {I, 2'00" N},

(2.2)

(2.3)

(2.4)

(2.5)

and to denote the lattice set of vectors {a}, with nonnegative integer com
ponents, by S, i.e.,

S = {a I (Xi a nonnegative integer, i E IN}'

The power series in Eq. (2.1) now may be written in the compact form

Rational approximants to f(z) of the form

where

(2.6)

(2.7)

(2.8)

(2.9)

have been defined and considered by Chisholm and McEwan [2]. We shall
refer to these approximants as being diagonal rational approximants or
Chisholm approximants (CA's). The coefficients a,. and ba are found by
solving a set of defining equations given by equating coefficients in f(z) and
in the expansion of fmlm(Z) up to a certain order.
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In this paper, we shall consider general-off-diagonal rational approximants
of the form

where m and n are points in the lattice set S, and where

Sm = {ex: I 0 ~ IXi ~ mi, i E IN},

Sn = {ex: I 0 ~ IXi ~ ni , i E IN}'

(2.10)

(2.ll)

(2.12)

Such an approximant may be referred to as the most general off-diagonal
approximant, as the maximum power of each variable is different in the
numerator and the denominator, and different variables may have different
maximum powers. In certain circumstances one might restrict oneself to the
simple-off-diagonal case in which m = (m, ... , m) and n = (n, ... , n), i.e., that
in which Sm and Sn are hypercubes instead of hyper-rectangular-boxes.
Such a restriction is convenient, for example, when fez) is a function
symmetric in its variables.

There are

n (mi + 1) + n (ni + 1)
iEIN iEIN

(2.13)

unknown coefficients in Eq. (2.10), and these coefficients must be given as the
solution of a set of defining equations. These equations are, as for Pade
approximants and Chisholm approximants, given by equating coefficients
off(z) andfm/n(z) up to a certain order. It is obvious from Eq. (2.10) that the
coefficients a", and ba will be determined at most up to a common multi
plicative factor. We shall thus assume that we can impose the normalization
condition

b = b = 10.0.....0 0 • (2.14)

Such a normalization condition may not be possible in certain abnormal
cases, for instance, if the defining equations only have a solution for which
bo = O. We shall not consider such cases in this paper.

By multiplying the difference between fez) and fm/n(z) by the denominator
offm/n(z) we obtain an equation of the form

L baza L caza - I a",z'" = L dpzP•
aESn aES ",ESm liES

Both sides of this equation may be "formal" power series.

(2.15)
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The correct number of defining equations will be obtained by requiring

dll = 0, ~ E: Sm U So, (2.16)

dll = 0, ~ E: Sa, (2.17)

and

I dll = 0, P E: P, (2.18)
IlER.;p

where the sets Sa , R4 :P and P (all subsets of S) will be defined below. S3 will
be a set bordering Sm U So . One requirement that we consider necessary is
that Sm U So U Sa is a set obeying the "rectangular rule." This rule may be
stated in the form

where the partial ordering

if ~ < ex, (2.19)

~ < ex, (2.20)

The rectangular rule is considered to be necessary, as it implies that when
fez) - fm/n(z) has imposed on it the condition that the term zu. is absent,
then zll is also absent for ~ < lX. The phrase "matching power series up to
a certain order" when applied to functions of N-variables is thus taken to
mean that the coefficients are equated in a region obeying the rectangular
rule. The set S4 = UPEP R4 :P will be a set bordering Sm U So U Sa and the set
Sm U So U Sa U S4 will also be a set obeying the rectangular rule.

Equations (2.16)-(2.18) yield

I baell-a = all ,
O'ESn

and

(2.21 )

(2.22)

where we use the convention

P E: P, (2.23)

if !Xi < 0 for at least one i in IN . (2.24)

The defining equations for the unknown coefficients all and ba thus form a set
of linear equations. Normally, the set of equations formed by (2.22), (2.23),
and (2.14), (bo = I), may be solved for the coefficients ba • The coefficients all
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then may be found directly from the equations in (2.21). The sets Sa, R4;p ,

and P will now be defined in a manner that will indicate that the number of
linear equations equals the number of unknown coefficients. In defining
these sets, a systematic method, the prong method, of solving the linear
equations for the unknowns, will also be indicated and we shall later find
necessary and sufficient conditions for the set of linear equations to be
nondegenerate.

Let

Then

m/ = min(mi , ni);

n/ = max(mi , ni)'

(2.25)

(2.26)

(2.27)

(2.28)

The set P, a subset of Sl , is now a set of points with a certain amount of
symmetry. Specifically,

P = {p Ip E Sl ; Ip = {j IPi = ~ax Pi} has at least two elements}. (2.29)
'EIN

For each PEP, write P = maxiEI Pi' For each PEP, other subsets of S are
N

defined as follows:

R1;p = {p} U {ex IP < (Xi ~ rn/; (Xi = Pi ,j 01= i} (2.30)
iEIp

R2;p = U {ex I m/ < (Xi ~ n/; Cl'.i = pj ,j 01= i} (2.31)
iEIp

Ra;p = U {ex In/ < (Xi ~ m/ + n/ - P; Cl'.j = pj ,j 01= i} (2.32)
iElp

R4 •P = U{ex I Cl'.i = m/ + n/ - P + 1; (Xi = pj ,j 01= i} (2.33)
iElp

except that

Write

and

Sa = URa;p,
pEP

(the empty set). (2.34)

(2.35)

(2.36)

(2.37)
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The set of points Rp form a geometrical figure, called a prong, with I branches
in the lattice space 8, where I is the number of elements in I p • One of these
branches is represented in Fig. 2.1.

a.
1

n!
1

m!
1

p

Sl Sz

i

c.......-_~~p~.~.€_~~l;~;_~t~-.---l~-<£~R~3-<;E~-<£_R4~;1-<2_
o

FIG. 2.1. One branch of a prong P .

It is easy to show that each point IX E 81 lies in one and only one of the
sets R1 ;p • Hence,

(2.38)

One can also check that

for P1 =F P2 . (2.39)

It is possible to show that the number of linear equations is just sufficient
to determine the unknown coefficients a,. and b" . One may do this by looking
at each of the sets Rp • A coefficient aa or ba is said to be "attached" to Rp

if IX E R p • Similarly, an equation da = 0 is said to be attached to R p if IX E Rp •

Each point IX E R1 ;p has two attached coefficients and each point ex E R2 ;p

has one attached coefficient. Hence, from (2.30) and (2.31), it may be seen
that there are

2 + L (mi + ni - 2p)
iElp

coefficients attached to Rp • The number of equations attached to Rp is also
equal to this same number. An exception is Ro , for which there is one less
equation, but this is compensated by the normalization condition bo = 1.

In general, there may be points in 82 that are not in the set UPEP R2 ;p •

Such points form the set

8 5 = 82\ UR2;p •

pEP
(2.40)
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For each point IX E Ss, there is one attached unknown coefficient, either
ao or bo , depending on whether a. E Sm or a. E So , and one attached equation
do = O.

We have now proved the following theorem:

THEOREM 2.1. The number of defining linear equations, given by (2.21)
(2.23) and bo = 1, equals the number of unknown coefficients, (2.13), in the
rational approximant (2. 10).

The set of equations attached to Rp will be denoted by Ep • We shall see
in the later sections how the sets Ep may be given a suitable ordering such that
on solving each set Ep in turn, the unknowns at any given stage are the
coefficients attached to Rp •

3. ApPROXIMANTS OF SERIES IN Two VARIABLES

A study of two variable approximants will illustrate the definition of the
general-off-diagonal rational approximants in N-variables, and also illustrate
methods and theorems that will be generalized later to cover the N-variable
case.

Let f(ZI ,Z2) be a function of two variables defined by its power series
expansion. The definitions in the previous section then yield the following
system:

00 00

f(zl , Z2) = L L ccx~zlcxzl = L CcxBZ1cxzl,
(x~o ~~O (a.f)ES

where
S = {(a, (3) I a, f3 nonnegative integers}.

A general-off-diagonal rational approximant to f has the form

where
Sm = {(po, v) I 0 ~ po ~ ml , 0 ~ v ~ m2},

So = {(a, T) I 0 ~ a ~ nl , 0 ~ T ~ n2}'

(3.1)

(3.2)

There are (ml + 1)(m2 + I) + (nl + 1)(n2 + I) coefficients in (3.2) to be
found from a set of defining linear equations.
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Equation (2.15) restricted to two variables becomes

209

nl n2 00 'X) ml m2 00 00

L L: bU7Z1uZ27 L: I Cr:J.13z1r:J.zl - L L: a".zl"z2· = I I dyaZ;;Z2
6
• (3.3)

U~O 7~O r:J.~O I3~O ,,~O .~O y~O a~o

The definition of the set P given by (2.29),

P = {p I p E Sl ; I p = {j IPi = max Pi} has at least two elements},
'EIN

clearly yields the following set for two variables:

P = {(p, p) I 0 ~ P ~ Pm},
where

is the maximum allowable value for the parameter p. In the rest of this
section, the parameter P will always be an integer between zero and Pm .
For each (p, p) = pEP, Eqs. (2.30)-(2.34) yield the following sets:

R1;p = {(p, p)} U {(a, p) Ip < a ~ min(m l , nl )}

U {(p, f3) I p < f3 ~ min(m2 , n2)};

R2;p = {(a, p) I min(ml , nl ) < ex ~ max(ml , nl )}

U {(p, f3) I min(m2 , n2) < f3 ~ max(m2 , n2)};

R3 ;p = {(ex, p) [ max(ml , nl ) < ex ~ ml + n1 - p}

U {(p, f3) I max(m2 , n2) < f3 ~ m2+ n2 - p};

R4 ;p = {(ml + nl -p + l,p),(p,m2 + n2 - P + I)},

except that R4 ;o = 0, the empty set.
The set of equations, Ep = E p • p , is made up of equations

and

(3.4a)

if p =1= O. (3.4b)

It is useful to consider a few diagrams in the two-dimensional lattice set S
to illustrate the types of regions in which one requires dya = 0, and the pairs
of points on which one requires L dya = O. Figure 3.1 illustrates the situation
for an example of a general-off-diagonal approximant. The various regions
Sm, So, Si (i = 1,2,3,4,5) and the points making up the prong Rp are
indicated. Figure 3.2 illustrates the situation for a simple-off-diagonal
approximant for which ml = m2 = m, nl = n2 = n. Figure 3.3 illustrates



FIG. 3.1. GOD approximant for two variables.

FIG. 3.2. SOD approximant for two variables.

2m

2m

FiG. 3.3. CA for two variables.
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the situation for a diagonal or Chisholm approximant. It would appear
from the diagrams that the generalizations to the various off-diagonal cases
is a fairly natural process.

The sets of equations Ep , pEP, will now be solved in the order

This ordering of the equations yields a successive method of solving the
defining equations for the unknown coefficients in the rational approximant.
This method has been termed the prong method (Hughes Jones and
Makinson, [5]). It enables the coefficients attached to each set Rp to be
determined by the equations Ep attached to the same set.

We start with the normalization condition,

bo.o = I. (3.5)

Now, consider the set Eo.o . Included in this set are the equations drn1+l.o =
0'00" dm,+nl'0 = 0. These equations written in matrix form become, putting
bo,n = I,

crnl-~l+l,O

crn1 .o

(3.6)

where we use the convention that c~~ = °if either ex or f3 is negative. The
coefficients bl.O '00" bn1 •o will be uniquely determined if the matrix in this
equation is nonsingular. Having found this solution, the coefficients
a o.o , a 1 •0 '00" arnl'0 may be determined from the equations do•o =
0"00' dm1 •o = 0, i.e.,

mln(nl'~)

a~.o = L: ba.oc~-a.o ,
0=0

ex = 0, I, ... , m1 • (3.7)

Equations (3.5)-(3.7) are precisely the equations that define the [m1!n1]

Pade approximant to the series
00

g(Zl) == j(Zl , 0) = :L: C~OZl~'
~=o

The coefficients bo•o , bo•1 , ... , bO' n2 and ao•o , aO.1 , ... , aO' rn2 are similarly
defined by the equations that determine the [m2!n2] Pade approximant to

h(Z2) == j(O, Z2) = :L: co~zl·
~~O
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By referring to (3.2), it may be seen that we have proved the following
theorem:

Let us now assume that the sets of equations

Eo.o , E1 •1 , ... , E 1J-1. 1J- 1

have been considered and the corresponding attached coefficients

alJ,V, /k < P, o~ v ~ m 2 ,

a/.LV, v <p, O~/k~ml'

bOT' a <p, o~ T ~ n2'

bOT' T <p, o ~ a ~ nl,

have been determined. Consider the set of equations E 1J•1J • It may be seen
that the equations in this set that do not involve the coefficients a,," may be
written out in the matrix form

Cm,-n,+l.O ... cm,- 1J ,o

o
Cm,+n,-21J,O

co,m2- p +1

Co•m .-1J ••• co.m.+n.-21J-l co ,m.+n.-2p

cm,-p+l.O ... c m,+ n,-2P.O c O,m.-1J+l··· co ,m.+n.-2P cm,+n, -2p+l.O

+co,m2+n2-2P+l

= quantity involving known coefficients. (3.8)

It will be convenient for future use to denote the matrix in this equation
by D p , and the vector of the baT by bp • The coefficients baT attached to Rp,p

may be uniquely determined from this equation if the matrix is nonsingular.
The coefficients a"v attached to R 1J ,p then may be found directly from the
rest of the equations in E1J • p , i.e., from

dp+l. p = 0, ... , d 1J •1J+1 = 0,... ,

By induction, all coefficients a"v and baT attached to the sets R p ,1J'
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o ~ P ~ Pm , may be found by the above procedure. The remaining coeffi
cients left to determine are those attached to the region

The coefficients attached to So may be determined one at a time by suitably
ordering the equations attached to S5' Any ordering of the equations such
that dIs = 0 is considered only if all daB = 0, IX ~ y, f3 ~ 0, (IX, f3) =1= (y, 0),
have already been considered is sufficient. A suitable ordering for the
example shown in Fig. 3.1 is

dpm+l.Prn+1 = 0'00" dn,.Pm+1 = 0,. .

These equations will determine the unknown coefficients if Coo =1= O. The
region S5 has unknown coefficients baT attached to it if

(3.9)

and then the condition Coo =I' 0 is necessary for unique determination of the
coefficients. If the condition in (3.9) does not hold then S5 (if nonempty)
will have unknown coefficients a"v attached to it and these will be determined
immediately once all the equations in the sets Ep , pEP, have been solved.

It is useful to introduce the following notation:

Cm,- p
•
O )

Cm,+n,-2p-l.O'

(3.10)

(3.11 )

(3.12)

Similarly, CP ;2' X P : 2 ' and Yp :2 will denote the corresponding quantities
when the second index in the CaB is nonzero and the first index is zero, e.g.,

The matrix D p of Eq. (3.8) is then of the form

(CO;1
0 X P : 1 ).D = Cp ;2 X p ;2p

X;;1 X;;2 Yp ;1 -+- Yp;2'

(3.13)
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Such matrices occur for P = 1, 2,... , Pm . For P = 0, let

(

CO;l

D = °
°

(3.14)

The complete set of equations for all the baT then may be written in the lower
triangular block form

o

Coo

• Co

= um/n , (3.15)

where Um/n is a column vector of dimension (n1 + 1) X (n2 + 1) with unity
in the (nl + n2 + l)th place and zeros elsewhere. The matrix will terminate
with Dp unless min(n1 , n2) > Pm .

The p~ong method of solving the set of defining equations for the rational
approximant in Eq. (3.2) thus yields the following theorem:

THEOREM 3.2. The approximant fm/n(zl ,Z2) is determined by a non
degenerate set of linear equations if and only if

(i) CO;l and C O:2 are nonsingular matrices,

(ii) Dp , P = 1,2,... , Pm are nonsingular matrices,

(iii) coo =1= 0, if min(n1 , n2) > Pm = min(m1 , m2 , n1 , n2)·

An approximant that is given by a nondegenerate set of equations may be
referred to as a nondegenerate approximant. It is of interest to note that the
conditions for nondegeneracy of fm/n(zl , Z2) involve only the coefficients co:o
and cos.

It is important to remember that the co:o(cos) that occur in the C p ;1(c'P;2)
always have increasing cx(f3) on moving to the right or downwards in the
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matrix CP :l (Cp : 2)' If this cannot occur then the matrix becomes void. For
instance if nl = Pm and n2 > Pm , then

i.e., C
Pm

:l and X Pm :l have become void since

ml - nl + 1 > ml ~ Pm > ml + nl - 2pm - 1
and

Such cases will not occur for P < Pm .
The quantities defined in Eqs. (3.10)-(3.13) satisfy certain recurrence

relationships. For instance

i = 1,2. (3.16)

If one is interested in generating approximants successively, then the
following types of properties would be useful:

C(mi + 1, ni + l;p + 1; i) = C(mi' ni ;P; i), i = 1,2,

D(ml + 1, m2 + 1, nl + 1, n2 + 1; P + 1) = D(ml , m2 , nl , n2 ; p),

where the notation has been enlarged so that the dependence on the order of
the approximant is included. The methods for generating Chisholm
approximants developed in a previous paper, Hughes Jones and Makinson [5],
may easily be extended to off-diagonal approximants.

The conditions for nondegeneracy of fm/n(Zl ,Z2) involve the coefficients
in the power series

and

The matrices that are required to be nonsingular may be seen to be related
to the matrices that have to be nonsingular when g(Zl) and h(Z2) are "normal"
series, see for example Wall [6]. It is, therefore, of interest to find the con
nection between the normality of the series g(Zl) and h(Z2) and the normality
of the seriesf(zl' Z2)' The seriesf(zl' Z2) will be referred to as a normal series
if the approximants fm/n(Zl , Z2) are all nondegenerate. It will be found that
the necessary conditions are almost, but not quite, the same.

Let us assume for the moment that g(Zl) and h(Z2) are normal series. It is
obvious from Theorem 3.1 that this condition at least is necessary for the
normality of the series f(zl , Z2)' The matrices Cp;i' 0 ~ P ~ Pm , i = 1,2,
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are now all nonsingular. It will be useful to find unit lower triangular
matrices Lp;i such that Lp;iCp;i are upper triangular matrices. To do this,
all the leading minors ofthe Cp;i must be nonsingular. This will not be true if
mi - ni + 1 < °since the matrices Cp;i then will have a number of zeros
in the top left-hand corner. Consider the case ml - nl + 1 < 0. Then,

0 Coo CIO cm1-p,o

Cp;l
Coo cn1-m'1-1.O cn1-m1,O cn1-p-l,O

-
CIO cnl-ml'O cn1-m1+l,O cn1-p,o

cm1-p,o cn1-p-l,O cn1-p,o cml+nc2P-l,O

It is, however, an easy task to produce other matrices Cp;l , from the Cp;l ,

which have all their leading minors nonsingular. This may be done by
reversing the order of the first nl - ml rows. Therefore, we let

Coo cn1-m1-l,O cn1-m1'O cn1-p-l,O

Cp;l = 0 Coo CIO cm1-p,o (3.l7a)
CIO cn1-m1'O cn1-m1+l,O cn1-p,o

cm1-p,o cn1-p-l,O cn1-p,o cml+nl-2P-l,O

if ml - nl + 1 < 0, and

(3.l7b)

These matrices will all be nonsingular if g(ZI) is a normal series, and all
the leading minors will also be nonsingular. Let matrices Cp;2 be defined in
a similar manner. Also define

(3.18a)

and
(3.l8b)

and let quantities Xp ;2 be defined in a similar manner.
The matrices that have to be reduced to upper triangular form in solving

the set of defining equations for fmlnCZI , Z2) are CO;1 , C O;2, and

P = 1, 2,· .. ,Pm. (3.19)
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Let Lp;i be the (unique) unit lower triangular matrix that reduces Cp;i to
upper triangular form. That is, Lp;iCp;i is an upper triangular matrix. The
recurrence relation

immediately implies a recurrence relation of the form

L _ (Lp;i 0)
p-1;i - Wp;i l' (3.20)

Also, the unit lower triangular matrices L p that reduce the iJp to upper
triangular form are given by

and

P = 1, 2,···,Pm. (3.21)

(3.22)

It may thus be seen that all the information required to reduce to upper
triangular form all the matrices that occur in the defining equations for
fm/n(Zl , Z2) is contained in LO:1 and LO;2 . Thus, the amount of actual elimi
nation necessary when findingfm/n(zl , Z2) is the same as that required when
finding gm In (Zl) and hm In (Z2)'

1 1 2 2

We are now in a position to prove a theorem giving sufficient conditions
for the nondegeneracy of fm/n(Zl , Z2)'

THEOREM 3.3. The approximant fm/n(Zl , Z2) is nondegenerate if

(i) g(Zl) and h(z2) are normal series,

(ii) Q p = Wp;lXp;l + W p;2X P:2 + YP:l + Y p;2 oF 0,

P = I, 2,···,Pm·

Proof The first condition ensures that the matrices Cp;i , P = 0, I, ... , Pm ;
i = 1,2, are nonsingular.

The second condition ensures that the iJp are nonsingular, since by matrix
multiplication we obtain

(

L p;lCP;l ° L p;lX P;l)
LpiJp = ° L p,2CP;2 L p;2X p;2,

° ° Q
p

where Q p is given by (3.22), and this matrix is only nonsingular if Q p oF 0.
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Condition (ii) in Theorem 3.3 involves the coefficients C~O and COil' If
during the calculation of a particular approximant one found that some Q p

vanished, then we could overcome this difficulty by scaling in one of)the
variables. It is well known that Pade approximants are invariant under
scaling, i.e., under z ---->- Kz. The approximants considered here, however,
are not usually invariant under scaling in one variable only. This occurs
because of the equations L dva = 0, where the summation is over points
in R4 ;p' It is useful to consider scaling in one variable only as it enables
us to prove an extension of a theorem proved in a previous paper, Hughes
Jones and Makinson [5].

THEOREM 3.4. The approximant !m/o(ZI' Z2) to the series !(ZI' Z2) =

](ZI , Kz2) will be nondegenerate if
(i) g(ZI) and h(Z2) are normal series,

(ii) the scale factor K is not equal to one of a finite number of values.

Proof The series!(ZI , Z2) is defined by

oc;. 00

j(ZI' Z2) = L: L: KIlC~I3ZtZ21l·
~~O Il~O

(3.23)

It is always assumed, of course, that K 01= 0.
Applying Theorem 3.2 to this series we find, after some row and column

multiplications by powers of K, and some row interchanges if necessary to
form the matrices (:P;i' that!m/oCzl, Z2) is nondegenerate if and only if

and

°K/';P;2
K p X;;2

p = 1, 2,... , Pm' (3.24)

are all nonsingular matrices, where

(3.25)

It is easy to see that the unit lower triangular matrices that reduce the
above matrices to upper triangular form are identical to those found for the
approximant fm/n(zl , Z2)' By matrix multiplication we find
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where

Qp = Wp;lXp;l + K pW p;2X p;2 + Yp;l + K pY p;2'

The scalars QP will all be nonzero if

K -J- _ Wp;lXp;l + Yp;l
p-r- ~.,. ,

W p;2A p;2 + Y p;2
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(3.26)

(3.27)

The numerator (denominator) of the right-hand side depends only on the
C"O(COIl) and is nonzero if g(zl)(h(z2» is a normal series.

By allowing m and n to take all possible values, we may prove another
theorem:

THEOREM 3.5. The series !(Zl , Z2) is a normal series if and only if

(i) g(Zl) and h(zl) are normal series,

(ii) the scale factor K is not equal to one of a denumerable number of
values.

In a previous paper (Graves-Morris, Hughes Jones, and Makinson [4])
simple-off-diagonal approximants to a series in two variables have been
defined. These are useful approximants to consider when f(zl ,Z2) is a
symmetric function in its variables. There are a number of theorems that
may be proved fairly easily for such functions. If ml = m2 = m and
n2 = nl = n, then we denote the (simple-off-diagonal) approximant by
fmln(zl , zJ.

If f(zl , Z2) is a symmetric function then, in particular, c"o = co,,, Hence,
when ml = m 2 , nl = n2 , we have

THEOREM 3.6. If f(zl ,Z2) is a symmetric function, then fmln(zl ,Z2) is
nondegenerate if and only if

(i) Cp;l' P = 0, 1,2,... , Pm - 1, are all nonsingular matrices,

(ii) coo =1= 0, ifPm < n, where Pm = min(m, n).

Proof The proof follows immediately from Theorem 3.2 and the fact
that Cp;l = Cp ;2 •

THEOREM 3.7. If f(zl' Z2) is a symmetric function and fmln(zl' Z2) is
nondegenerate, then fmln(zl , Z2) is a symmetric function.

Proof This theorem follows by considering, during the prong method of
solving the defining equations, the difference between the equations
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dm+1.v = 0,... , dm+n- v.v = 0, and the equations dv,m+1 = 0,... , dv,m+n-v = 0.
We will then obtain, assuming that coefficients bUT already calculated are
symmetric, the equations

cm-~+l.O

Cm-V,O

cm-V,O ) (' bn,v bp,n )
. . = 0.

Cm+n~2P-1.0 bp~l.v - bv,:v+1

As the matrix is nonsingular, we deduce that the coefficients bUT attached
to Rp are symmetric. Hence, by induction, baf! = bf!a for all lX, f3. Also,
aaf! = af!a since the defining equations are set up in a symmetric manner.

The following four theorems will be stated without proofs as proofs may be
easily constructed.

THEOREM 3.8. If f(Zl , Z2) is a symmetric function, then fmln(zl ,Z2) is
nondegenerate if and only if

(i) gm-vln-v(Zl), P = 0, 1, ... , Pm - 1, are all nondegenerate Pade
approximants,

(ii) coo =1= 0, ifPm < n.

THEOREM 3.9, If f(Zl , Z2) is a symmetric function, then all simple-off
diagonal approximants are nondegenerate ifand only ifg(Zl) is a normal series.

THEOREM 3.10. Iff(zl, Z2) is a symmetricfunction;j(zl, Z2) = f(Zl, Kz2);
and fmln(zl , Z2) is nondegenerate, then Imln(Zl , Z2) is nondegenerate so long as

p = 1, 2, ... , Pm .

THEOREM 3.11. If the conditions of Theorem 3.10 hold then we have
invariance under scaling in one variable, i.e.,

A theorem of Common and Graves-Morris [3] concerning Chisholm
approximants to a function of two variables that factorizes into the product
of two functions of one variable may be easily extended to the genera1-off
diagonal approximants.

THEOREM 3.12. Iff(zl, Z2) is afunction such that

00 00

f(zl , Z2) = L: L: gahf!zlazl,
a~O f!=0

(3.28)
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and fm/n(Zl , Z2) is nondegenerate, then

where gm In (Zl) is the [ml!nl] Pade approximant to, ,
00

g(Zl) = I g(y'zt,
0::=0

00

h(z2) = I hfJZl·
fJ~O

Proof If fm/n(Zl , Z2) is nondegenerate, then
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(3.29)

and

are nondegenerate Pade approximants, where we have labeled the numerator
and denominator polynomials in the Pade approximants with indices N
and D. From the theory ofPade approximants

g~,(Zl) g(Zl) = g~,(Zl) + O(Z;",+n,+1),

h~2(z2) h(z2) = h::'2(z2) + O(z~2+n2+1).

Hence, on multiplying both sides,

g~,(Zl) h~2(Z2) f(Zl , zJ = g~,(Zl) h::'iz2) + O(z;",+n,+1) + O(z~2+n2+1).

On inspecting Eq. (3.3) and Fig. 3.1, we see that this equation more than
satisfies the defining equations for fm/n(Zl ,Z2)' Since the coefficients in
fm/n(Zl' Z2) are uniquely determined when the approximant is nondegenerate,
we may deduce that

The final theorem that will be proved in this section involves the inverse
function. This will be an extension of the theorem for Chisholm approximants
proved by Chisholm [1].

THEOREM 3.13. Let f(zl' Z2) be a series with an inverse series g(Zl , Z2)
in the sense that

(3.30)
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Proof The approximant fmfiz1 , Z2) is defined by Eqs. (3.2)-(3.4). Notice
also that the sets R1 ;p , R2 ;p , R3 ;p , and R4 ;p are invariant under the interchange
ofm and n.

If (3.2) is multiplied by

OIl 00

g(Zl , Z2) = L L e",sztzl,
0<=0 s=o

then we obtain

nl na ml m2 00 00 00 00

L L ba7ztz27
- L L a/1.vz1/1.z2V L L e",szl"'zl = L L: Jy6ZlZ26, (3.31)

a=O 7=0 /1.=0 v=O ",=0 S=O "1=0 6=0

where
y B

JY6 = L: L dY -",.6-Se",S·
",=0 S=O

Since the set 81 U 8 2 U 83 obeys the rectangular rule it may be deduced that

This result, combined with the fact that the set 81 U 8 2 U 83 U 8 4 obeys the
rectangular rule, may be seen to imply that

It now may be seen that (3.31), together with the above requirements for the
vanishing of the coefficients JY6 , is the defining equation for

Hence,

4. ApPROXIMANTS OF SERIES IN N VARIABLES

In the previous section, methods and theorems for rational approximants
to series in two variables were examined in some detail. The prong method
for solving the defining equations gave a number of useful theorems about the
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conditions for nondegeneracy. The essence of the prong method lay in
ordering the prongs so that, on solving the sets of equations Ep in that order,
i.e., Eo.o , E1,1 ,... , Epm•

Pm
' the coefficients b(n and a"v could be found in a

systematic manner. In this section, it will be shown how an ordering of the
prongs Rp for the case of N-variables may be introduced so that the coeffi
cients b(J and al' may be found in a systematic manner. Of course, solving
for the al' is very straightforward, as they are determined immediately once
the necessary b(J have been found (Eq. (2.21)).

Before setting up the prong method, it might be useful to consider a few
diagrams to illustrate approximants for three variables. Three variable
approximants contain all the essential features of approximants for more than
three variables. Figures 4.1-4.3 illustrate the definitions introduced in
Section 2. Figure 4.1 represents a CA, Fig. 4.2 an SOD approximant, and
Fig. 4.3 a GOD approximant. The points p that form the set P lie on the
three surfaces OAD, OBD, and OCD. The prongs branch out from these
points; prongs with three branches starting on the completely symmetric
line OD. The various regions S1 , S2 , S3 and S4 are indicated on each diagram.
S2 is of course an empty set for a CA.

Figures 4.1-4.3 indicate that once the two variable approximants have been
defined, and the rectangular rule is required for the three, or more, variable

FIG. 4.1. CA for three variables.
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FIG. 4.2. SOD approximant for three variables.

approximants, there is really no choice in the definition of approximants in
more than two variables. The regions 81 , 8 2 , 83 , and 84 are defined by
projecting upwards away from each coordinate plane.

The first step in constructing the prong method for N·variables is contained
in the argument leading up to Theorem 2.1, namely, that the number of
coefficients b" and a" attached to the prong R p is equal to the number of
defining equations attached to the same prong, i.e., to the number of elements
in Ep • As each a" is given by one equation in Ep , it follows that the number of
coefficients b" attached to R p equals the number of equations attached to R p

that do not involve the a" . This result will be used in the following.
The second step in constructing the prong method lies in the introduction

of a partial ordering for the points p in the set P. The prongs Rp then will be
ordered according to this rule. In Section 2, the partial ordering

13 < ex, means 13 =1= ex; f3i < (Xi, i E IN
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was introduced (Eq. (2.20». It will be shown that an ordering of the sets Rp

according to this rule will result in a systematic method for solving the
defining equations. A particular set of equations Ep will thus only be con
sidered after all the sets Eq , q < p have been considered. For example,
for three variables the set P may be ordered in the following manner:

(0, 0, 0), (l, 1, 0), (2, 2, 0), .
(1,0, I), (2,0,2), .
(0, I, I), (0, 2, 2), .

(1, I, I), (2,2, I), .
(2, I, 2), .
(1,2,2), .

(2,2,2),...

Alternative orderings will of course exist for three or more variables as the
above ordering is only a partial ordering. For two variables, the elements
of P may be ordered in only one way.

/

~_S2-y

FIG. 4.3. GOD approximant for three variables.
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The third stage in the construction of the prong method lies in the following
theorem:

THEOREM 4.1. The coefficients ba that occur in the equations that form the
set Ep are attached to prongs Rq , q ~ p.

Proof Let ei be unit vectors in N dimensions given by

el = (1, 0, , 0)

e2 = (0, 1, ,0)

eN = (0,0, ... , 1).

(4.1)

This theorem will be proved by considering an example. Without any loss
of generality, consider the prong Rp for which p is given by

p = (p, ..., P, PHI,.. ·, PN); Pi+! < p, ... , PN < p.

Consider an equation da = °in the set Ep • Without loss of generality, let

i.e., da = °is an equation attached to a point on the first branch of Rp •

This equation is

L baca-a = aa ,
aeSn

= 0,

where we use the usual convention that Ca- a is zero if one or more of the
components of tt - 0 is negative. The vector index 0 in the above equation
thus lies in the range

where

If a particular value of 0 that occurs in the above equation has components
given by

ai = ami, i = 2, ... , N,

then ba is attached to Rp if amI - fJI ;:? P, and ba is attached to prong Rq

for which q < p if amI - f3I < p.
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If another particular (J has components such that
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Ui < Umi , for at least one i in the range 2, ... , N,

then it is straightforward to prove, by considering various cases, that b(J is
attached to a prong Rq for which q < p.

As the points p in the set P, and hence, the prongs Rp , have been partially
ordered so that Ep is considered only when all Eq , q < p have been con
sidered, we have, using the result of this theorem, a systematic method, the
prong method, for solving the complete set of defining equations for the
approximant fm/n(Z),

Consider a particular prong Rp • The set Ip is given by

Ip = {j IPi = max Pi = p}.
iEIN

Let

(4.2)

I p thus has I elements. The coefficients b(J attached to Rp form a vector bp

defined by

(4.3)

where

Let

(4.4)

C(mi~p)ei )

c(m;+ni-2P- 1)e;

C(m;+ni-2P)e;)T

(4.5)

(4.6)

(4.7)

If all the b(J attached to the prongs Rq , q < p, have already been found, the
equations in the set Ep that determine bp are of the form

Dpbp = quantity involving known coefficients, (4.8)
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where

c',··· 0 Xp;i1

X;", )Dp = 0 CP;i, (4.9)

X~.il X~;i, L Yp;i
iElp

The matrix Do is slightly different from this general form since R4;o = 0

(the empty set), and we normalize the approximant by taking bo = 1. Do is
thus given by

_ (CO;1 '. 0 X~;I)
Do - .

CO;N XO;N '

o 1

(4.10)

and bo is determined by an equation Dobo = column vector with unity in last
position and zeros elsewhere.

Thus, when the prong method is carried through for all PEP, we obtain
for each P a matrix Dp that has to be nonsingular if the approximant fm/n(Z)
is to be nondegenerate. Do is of course nondegenerate if and only if

CO;i' i = 1,... , N are all nonsingular matrices.

It may be noted that not all matrices Dp are necessarily different for series in
more than two variables. For example, for three variables, there are equalities
of the form

if PI = (p, p, Pa), P2 = (p, P, Pa - 1), Pa < p.

All coefficients ba (and hence, all) attached to points in 8 1 and UPEP R2;p

are determined during the above systematic method. In general, there are also
coefficients attached to

which remain to be determined. Again, as for the case of two variables, if
Co =1= 0, any remaining ba may be determined one at a time by imposing the
partial ordering on the points in 8 5 • Any coefficients all attached to 8 5 then
may be determined immediately.

The complete set of equations for all the ba in fm/n(Z) may be written in
a lower triangular block form similar to Eq. (3.15). The following theorem
has now been proved.
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THEOREM 4.2. fm/n(z) is a nondegenerate approximant if and only if
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(i) Dp , pEP, are all nonsingular matrices,

(ii) Co =F 0, if Sn () Ss =F 0.

As for the case of two variables, it may be seen that the conditions for
nondegeneracy involve only the coefficients in the one variable series obtained
from fez) by equating each of the other variables to zero, i.e., the series

00

gi(Zi) = L Caeli\
Cl:=o

i = 1'00" N. (4.11)

The partial ordering introduced in the construction of the prong method
implies a "projection" theorem:

THEOREM 4.3. Let fez) be a power series in N variables and let J(z) be a
power series in N variables (N < N) obtained from fez) by equating to zero
N - N of the variables Zl , ... , ZN' Write

m = (mi, '00" miN)'

n = (ni, ,... , niN)'

Then, JmJDCz) = fm/nCz) IZi~O;iEIN\IN'

Proof The proof of this theorem lies in the fact that all prongs R p with
a particular component, or components, of p zero may be considered before
prongs Rp with that particular component, or components, of p nonzero.
Note also that the set of equations Dobo = (column vector with unity in last
position and zeros elsewhere) may be split into N independent sets of
equations

i = 1'00" N. (4.12)

This theorem includes as a particular case the reduction to Pade approx
imants when all but one of the variables is equated to zero.

When the prong method is used numerically to solve for the coefficients ba ,

a method of triangulating each of the matrices D p , pEP, is required. One
method for carrying out this procedure is a generalization of the method
given in the previous section for two variables. Assume, for the moment,
that the series gi(Zi)' i = 1,... , N, are all normal series. The matrices Cp;i
will then all be nonsingular. Introduce, as in Eqs. (3.17)-(3.19), matrices
CP;i' Dp and vectors Xp;i such that all leading minors of the Cp;i are non
singular. Unit lower triangular matrices Lp;i then may be found such that
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Lp;iCp;i are upper triangular matrices. As for the case of two variables, there
are recurrence relations of the form

and

L _ (Lp;i 0)
P-l;i - Wp;i I'

i = I,... , N,

i = I, ... , N.

(4.13)

(4.14)

The matrix IJp , for a particular value of p, will be reduced to upper
triangular form by

where

o

J (4.15)

Ip = {i1 , ... , it} = {j IPi = max Pi = p} as usual.
iEIN

Lowill have zeros instead of W's in the last row. Once again, the lowest order
lower triangular matrices, namely,

LO: i , i = I, 2, ... , N,

contain all the information required to write down all lower triangular
matrices 4 ,pEP. Thus, when calculating!m/n(z), the amount of elimination
necessary equals the amount of elimination necessary in calculating the
Pade approximants

i = I, ... , N.

The various theorems proved in the previous section now may be extended
to the N-variable case.

THEOREM 4.4. The approximant !m/nCZ) is nondegenerate if

(i) gi(Zi)' i = 1,... , N, are all normal series,

(ii) Q p = L (WP:iXp;i + Yp:i ) =1= 0, P E P\{O}.
iElp

The proof of this theorem is similar to the proof of Theorem 3.3.

(4.16)
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THEOREM 4.5. The approximant Jm/nCZ) to the series
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will be nondegenerate if

(i) gi(Zi)' i = I,..., N are normal series,

(ii) the scale factors Kli) do not satisfy a finite number of polynomial
equations.

Proof This theorem may be proved in a similar fashion to the method of
proving Theorem 3.4. It may be shown that the Kli) must be such that

where

P E P\{O}, (4.17)

(4.18)

THEOREM 4.6. The seriesJ(z) (as defined in Theorem 4.5) is a normal series,
i.e., approximants Jm/n(Z), for all m and n, are nondegenerate, if and only if

(i) gi(Zi)' i = 1'00" N, are normal series,

(ii) the scale factors K(i) do not satisfy a denumerable set ofpolynomial
equations.

Proof The first condition is needed as Jm/n(Z) reduces to a Pade approxi
mant if all but one of the variables is equated to zero. The second condition
may be seen to be needed by letting m and n take on all possible values
in the previous theorem.

If fez) is a function symmetric in all, or some, of its variables, then
Theorems 3.6-3.11 have the obvious generalizations.

Theorems 3.12 and 3.13, concerning factorization and the inverse function,
may also be generalized to N variables.

THEOREM 4.7. Let fez) be afunction of N variables that factorizes into the
product of two functions of N 1 variables and N 2 variables (N = N1 -!- N 2).

Without loss ofgenerality, write

(4.19)

Then, assuming the approximants are nondegenerate,

(4.20)
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Proof Let a = a1 EB a2 signify the splitting of a vector with N com
ponents into two vectors, with N1 and N2 components, e.g.,

The approximants fm/n(Z), f~l/nl(zl) and f~2/n2(z2) are defined by

I baza I CuZU = I a",z'" + I dJlzJl
aESn UES ",ESm JlES

I b~,(zl)a' I C~l(Zl)Ul = I a~l(zl)",l + I d~l(ZI)Jll
(JIES~l alESl J.lIES~l pIES!

I b~2(z2)a2 I c;b2)U2
= I a~2(z2)",2 + I d:2(Z2)Jl2,

(J2e S:2 a 2eS2 J.l2ES~2 IPes2

where

dJl = 0,

d~l = 0,

d:2 = 0,

(3 E SI U S2 U S3

WE SII U Sl U Sl

(32 E SI2 U S22 U S32,

and the sums of various d's are zero over the sets S4 , Sl, S42.
The following properties of the various S's may be proved from their

definitions (reference may be made to Figs. 4.1-4.3 for a demonstration of
these properties for 2 + I variables):

(SI U S2 U S3) C (SII u Sl U Sl) EB (S12 U S22 U S32)

(Sl U S2 U S3 U S4) C (SII u Sl u Sl u S41) EB (S12 U S22 U S32 U S42).

These properties ensure that, on multiplying the defining equations for
f~l/nl(zl) and f~2/n2(z2), we obtain the defining equation for fm/n(Z) (with an
extra bonus in having some dp = °outside the region SI U S2 U S3)' The
theorem is thus proved. The theorem of course may be applied several times
to a function that factorizes into the product of more than two functions.
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THEOREM 4.8. Let fez) be a series with an inverse series g(z) in the sense
that

fez) g(z) = 1.

Iffmfn(Z) and gnfm(z) are nondegenerate, then

fmfn(Z) gnfm(Z) = 1.

(4.21)

(4.22)

Proof This theorem may be proved in the same way as Theorem 3.13.
One notes that Sl , S2' Sa, and S4 are invariant under the interchange of
m and n. Also, the sets Sl U S2 U Sa and Sl U S2 U Sa U S4 obey the
rectangular rule.
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